Shortcuts

torch.randint

torch.randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)Tensor

Returns a tensor filled with random integers generated uniformly between low (inclusive) and high (exclusive).

The shape of the tensor is defined by the variable argument size.

Note

With the global dtype default (torch.float32), this function returns a tensor with dtype torch.int64.

Parameters
  • low (int, optional) – Lowest integer to be drawn from the distribution. Default: 0.

  • high (int) – One above the highest integer to be drawn from the distribution.

  • size (tuple) – a tuple defining the shape of the output tensor.

Keyword Arguments
  • generator (torch.Generator, optional) – a pseudorandom number generator for sampling

  • out (Tensor, optional) – the output tensor.

  • dtype (torch.dtype, optional) – if None, this function returns a tensor with dtype torch.int64.

  • layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

Example:

>>> torch.randint(3, 5, (3,))
tensor([4, 3, 4])


>>> torch.randint(10, (2, 2))
tensor([[0, 2],
        [5, 5]])


>>> torch.randint(3, 10, (2, 2))
tensor([[4, 5],
        [6, 7]])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources